Phenological sequences reveal aggregate life history response to climatic warming.
نویسندگان
چکیده
Climatic warming is associated with organisms breeding earlier in the season than is typical for their species. In some species, however, response to warming is more complex than a simple advance in the timing of all life history events preceding reproduction. Disparities in the extent to which different components of the reproductive phenology of organisms vary with climatic warming indicate that not all life history events are equally responsive to environmental variation. Here, we propose that our understanding of phenological response to climate change can be improved by considering entire sequences of events comprising the aggregate life histories of organisms preceding reproduction. We present results of a two-year warming experiment conducted on 33 individuals of three plant species inhabiting a low-arctic site. Analysis of phenological sequences of three key events for each species revealed how the aggregate life histories preceding reproduction responded to warming, and which individual events exerted the greatest influence on aggregate life history variation. For alpine chickweed (Cerastium alpinum), warming elicited a shortening of the duration of the emergence stage by 2.5 days on average, but the aggregate life history did not differ between warmed and ambient plots. For gray willow (Salix glauca), however, all phenological events monitored occurred earlier on warmed than on ambient plots, and warming reduced the aggregate life history of this species by 22 days on average. Similarly, in dwarf birch (Betula nana), warming advanced flower bud set, blooming, and fruit set and reduced the aggregate life history by 27 days on average. Our approach provides important insight into life history responses of many organisms to climate change and other forms of environmental variation. Such insight may be compromised by considering changes in individual phenological events in isolation.
منابع مشابه
Links between plant species' spatial and temporal responses to a warming climate.
To generate realistic projections of species' responses to climate change, we need to understand the factors that limit their ability to respond. Although climatic niche conservatism, the maintenance of a species's climatic niche over time, is a critical assumption in niche-based species distribution models, little is known about how universal it is and how it operates. In particular, few studi...
متن کاملThe effects of experimental warming on the timing of a plant-insect herbivore interaction.
The phenology of many species is shifting in response to climatic changes, and these shifts are occurring at varying rates across species. This can potentially affect species' interactions and individual fitness. However, few studies have experimentally tested the influence of warming on the timing of species interactions. This is an important gap in the literature given the potential for diffe...
متن کاملSpatiotemporal Variation in Avian Migration Phenology: Citizen Science Reveals Effects of Climate Change
A growing number of studies have documented shifts in avian migratory phenology in response to climate change, and yet there is a large amount of unexplained variation in the magnitude of those responses across species and geographic regions. We use a database of citizen science bird observations to explore spatiotemporal variation in mean arrival dates across an unprecedented geographic extent...
متن کاملA Range-Expanding Shrub Species Alters Plant Phenological Response to Experimental Warming
Shifts in plant species phenology (the timing of life-history events such as flowering) have been observed worldwide in concert with rising global temperatures. While most species display earlier phenology with warming, there is large variation among, and even within, species in phenological sensitivity to rising temperatures. Other indirect effects of climate change, such as shifting species c...
متن کاملMultispecies comparisons of adaptability to climate change: A role for life‐history characteristics?
Phenological advancement allows individuals to adapt to climate change by timing life-history events to the availability of key resources so that individual fitness is maximized. However, different trophic levels may respond to changes in their environment at different rates, potentially leading to a phenological mismatch. This may be especially apparent in the highly seasonal arctic environmen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ecology
دوره 89 2 شماره
صفحات -
تاریخ انتشار 2008